

INDUSTRY INNOVATIONS: PROVISIONAL HARVEST YIELD RESULTS – April Sown Barley

2025 NEV Crop Technology Centre (Yarrawonga)

Sown: 30 April 2025

FAR trial code: FAR NEV B25-78

Harvested: 25 November 2025

Growing season rainfall: 210.5mm

Rotation position: 2024 – Canola, 2023 – Vetch

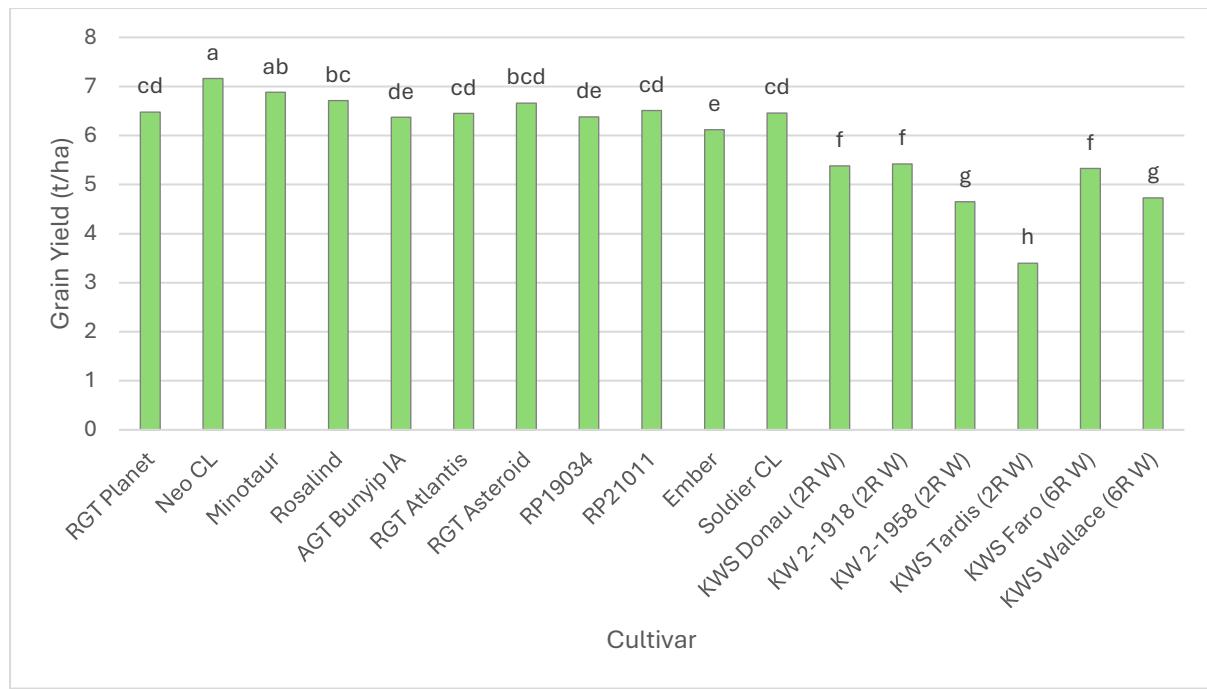
Soil type & management: Brown silty clay loam; canola stubble raked pre sow.

The Germplasm Evaluation Network (GEN) is a FAR Australia 'Industry Innovations' initiative that tests crop variety performance across FAR Australia's national network of Crop Technology Centres. GEN sites test variety performance with and without fungicide. FAR Australia provides the control varieties and breeders enter their chosen lines for evaluation.

Objectives

To assess the yield performance of a range of barleys, managed with and without fungicide against four regional controls (Minotaur, Neo CL, RGT Planet, and Rosalind), sown in late April in the Yarrawonga (northeast Victoria) medium rainfall environment.

Key Points


- *There was low disease pressure in the trial which has resulted in no statistical yield or grain quality response to applied foliar fungicides.*
- *There were significant yield differences between varieties ($p<0.001$), Neo CL being the highest yielding variety yielding 7.16t/ha although this was not statistically better than Minotaur yielding 6.88t/ha.*
- *The 6 winter barleys tested were lower yielding than all the spring barleys, the best of the winters being KWS Donau, KW 2-1918, and the 6 row KWS Faro yielding 5.38, 5.42 and 5.33t/ha respectively.*
- *Grain protein was generally high with all varieties exceeding 12%, the winter barleys had the highest grain proteins 13.8-15.7%.*
- *Excluding grain protein, Minotaur was the only variety to meet malt specifications for test weight, retention and screening, most other varieties had too high screenings and too low retentions.*
- *Scald, net form net blotch (NFNB), and spot form net blotch (SFNB) were all present in the trial with scald being the most dominant disease. RGT Planet had the highest levels of infection for all three diseases: 20.0% Scald, 8.7% NFNB, 1.3% SFNB (plot infection of untreated plots).*

Yield (t/ha) & quality data (% protein, test weight, % screenings)

Table 1. Influence of fungicide application on the grain yield (t/ha) of wheat varieties plus and minus fungicide.

Variety	Management Level		
	Untreated		Plus fungicide
	Yield t/ha	Yield t/ha	Yield t/ha
RGT Planet (s)	6.36 -	6.61 -	6.48 cd
Neo CL (s)	7.22 -	7.10 -	7.16 a
Minotaur (s)	6.98 -	6.78 -	6.88 ab
Rosalind (s)	6.74 -	6.67 -	6.71 bc
AGT Bunyip IA (AGTB0530) (s)	6.33 -	6.41 -	6.37 de
RGT Atlantis (s)	6.34 -	6.57 -	6.45 cd
RGT Asteroid (s)	6.69 -	6.63 -	6.66 bcd
RP19034 (s)	6.42 -	6.35 -	6.38 de
RP21011 (s)	6.31 -	6.71 -	6.51 cd
Ember (IGB21130) (s)	6.26 -	5.99 -	6.12 e
Soldier CL (IGB22117) (s)	6.60 -	6.32 -	6.46 cd
KWS Donau (2R W)	5.31 -	5.45 -	5.38 f
KW 2-1918 (2R W)	5.31 -	5.53 -	5.42 f
KW 2-1958 (2R W)	4.62 -	4.67 -	4.65 g
KWS Tardis (2R W)	3.70 -	3.09 -	3.40 h
KWS Faro (6R W)	5.44 -	5.22 -	5.33 f
KWS Wallace (6R W)	4.87 -	4.60 -	4.73 g
Mean	5.97 -	5.92 -	
LSD Cultivar p = 0.05	0.32	P value	<0.001
LSD Management p = 0.05	ns	P value	0.779
LSD Cultivar x Man. p = 0.05	ns	P value	0.265

S – spring varieties (all two row), W - winter varieties, 6R – 6 row, 2R – 2 row

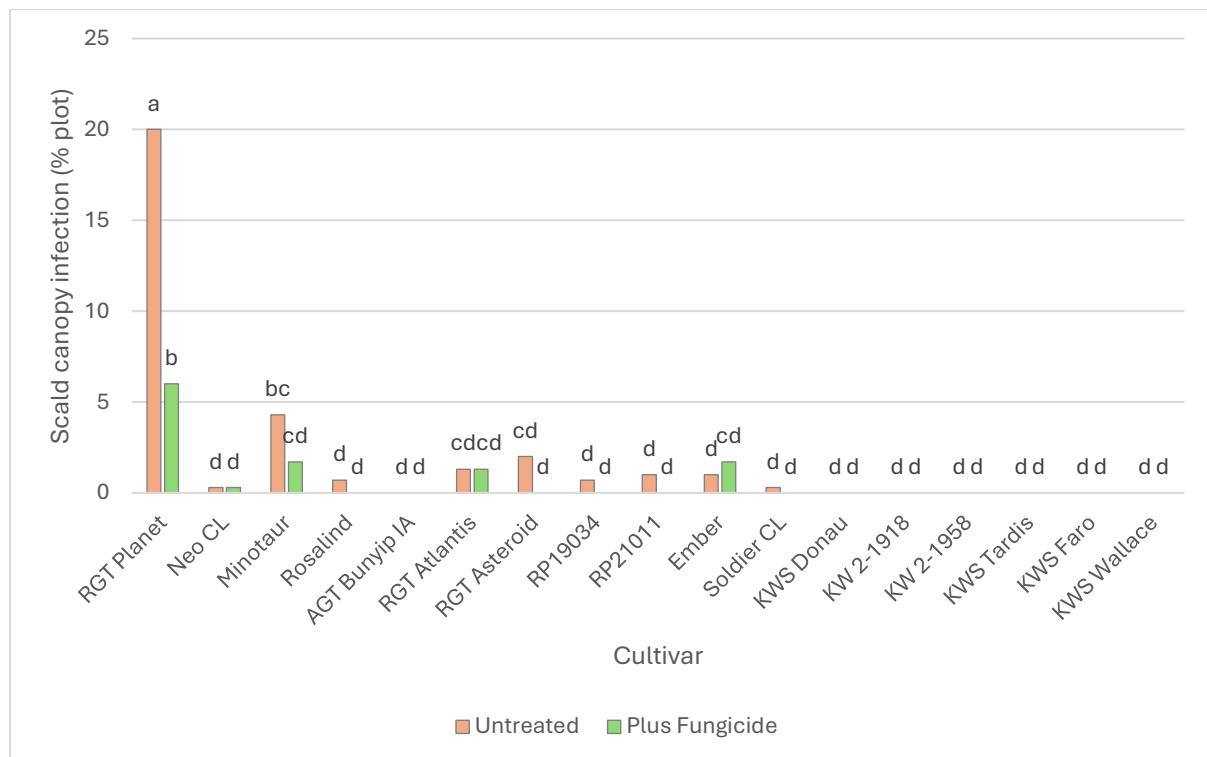
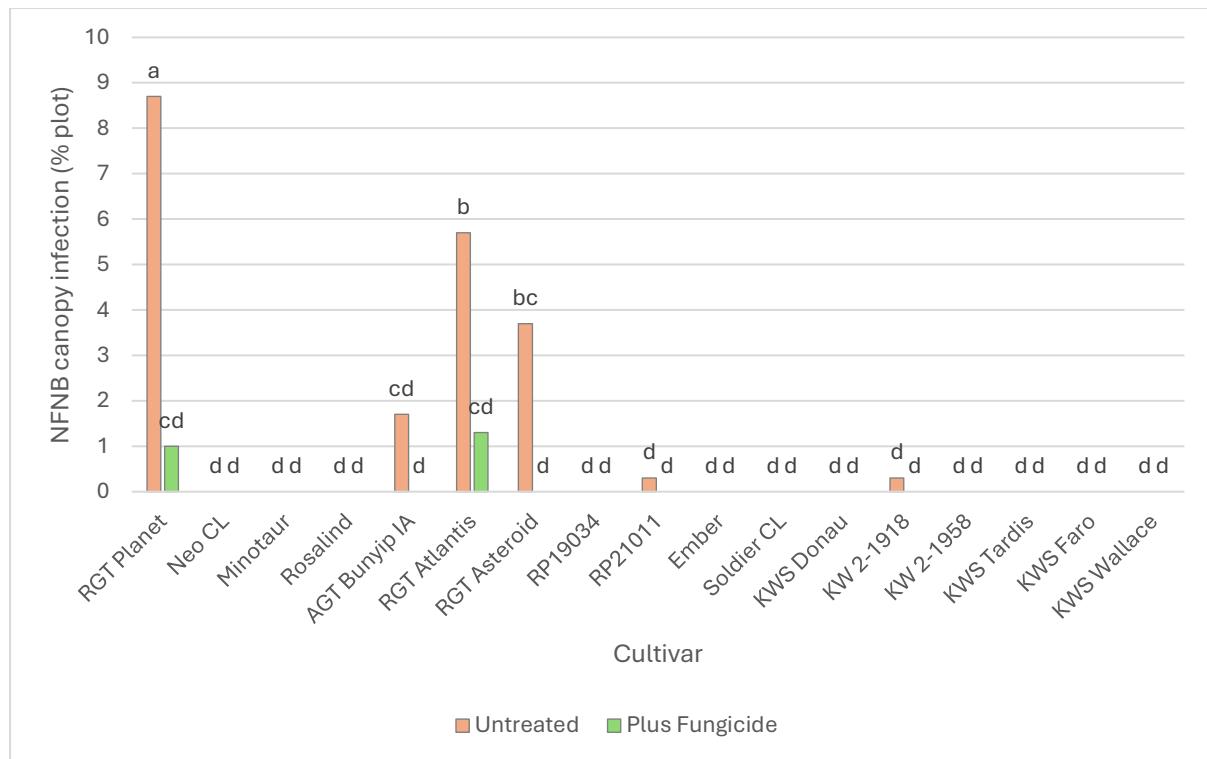


Figure 1. Influence of barley cultivar on grain yield (t/ha). Means of plus and minus fungicide treatments, $P < 0.001$, LSD ($p=0.05$) = 0.32.


Table 2. Influence of fungicide application or variety on the grain quality (protein – corrected to 0% moisture, starch, fibre, test weight, retention and screenings) of barley varieties.

	Protein %	Starch %	Fibre %	Test Weight kg/hL	Retention %	Screenings %						
1 Untreated	13.6	-	59.9	-	4.0	-	66.1	-	45.0	-	17.4	-
2 Full Fungicide	13.1	-	60.3	-	3.9	-	66.4	-	47.2	-	15.4	-
Pval	0.091		0.144		0.638		0.605		0.201		0.322	
LSD P=.05	ns		ns		ns		ns		ns		ns	
	Protein %	Starch %	Fibre %	Test Weight kg/hL	Retention %	Screenings %						
1 RGT Planet	12.5	fg	60.4	def	3.8	fg	65.4	fg	39.4	e	19.9	c
2 Neo CL	12.0	h	60.6	cde	3.8	fg	65.8	e-h	64.3	ab	8.1	ef
3 Minotaur	12.4	fg	61.6	a	3.3	i	69.2	ab	72.0	a	5.4	f
4 Rosalind	12.1	h	59.9	fg	4.1	def	68.8	bc	71.4	a	8.4	ef
5 AGT Bunyip IA	12.6	fg	61.2	ab	3.8	gh	70.7	a	71.0	a	10.8	def
6 RGT Atlantis	12.9	efg	59.3	ijk	4.3	abc	64.6	hij	47.6	de	14.7	cde
7 RGT Asteroid	13.3	de	59.7	g-j	4.0	efg	65.2	ghi	44.6	de	14.2	cde
8 RP19034	13.3	de	60.6	cde	3.7	h	66.8	def	39.4	e	14.8	cde
9 RP21011	12.3	gh	59.9	f-i	4.1	cde	63.8	ij	46.0	de	18.0	cd
10 Ember	12.9	efg	59.5	h-k	4.1	cde	66.6	d-g	40.5	e	13.2	c-f
11 Soldier CL	13.0	ef	61.1	abc	3.8	gh	67.8	bcd	60.9	bc	6.7	ef
12 KWS Donau	13.8	cd	60.8	bcd	3.7	h	64.8	hi	67.6	ab	12.7	c-f
13 KW 2-1918	14.3	bc	59.1	k	4.2	b-e	65.1	ghi	10.0	f	31.2	b
14 KW 2-1958	14.4	b	60.6	cde	3.7	h	67.2	cde	51.0	cd	9.2	ef
15 KWS Tardis	15.7	a	60.1	efg	4.4	ab	65.6	e-h	41.5	de	11.3	c-f
16 KWS Faro	14.5	b	59.2	jk	4.2	a-d	65.3	f-i	10.1	f	39.6	ab
17 KWS Wallace	14.8	b	58.4	l	4.4	a	63.2	j	7.0	f	40.3	a
Grand Mean	13.3		60.1		4.0		66.2		46.1		16.4	
Pval	<0.001		<0.001		<0.001		<0.001		<0.001		<0.001	
LSD P=.05	0.6		0.6		0.2		1.6		10.0		8.7	

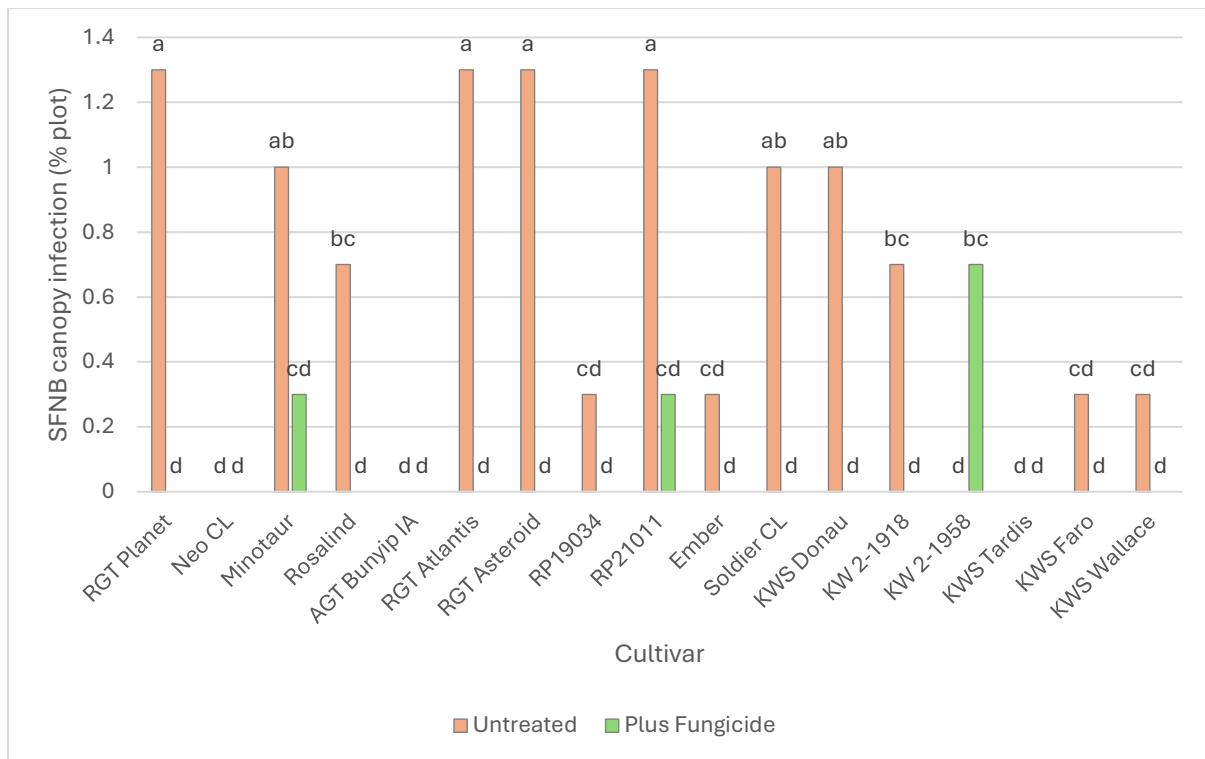

Disease assessments

Figure 2. Influence of variety and fungicide application (2 spray programme) on **scald** plot infection (P-Value < 0.001, LSD (p=0.05) = 3.2), assessed on 21 October 2025.

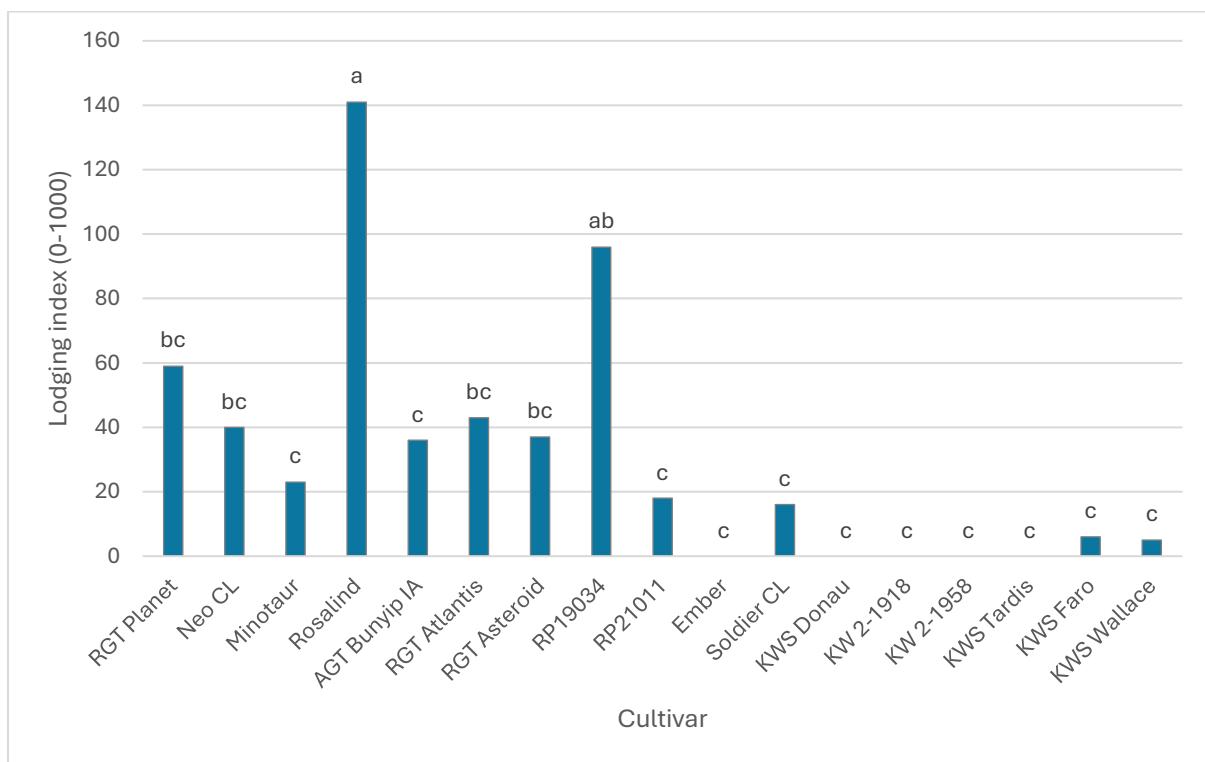


Figure 3. Influence of variety and fungicide application (2 spray programme) on **net form net blotch** (NFNB) plot infection (P-Value = 0.042, LSD (p=0.05) = 2.8), assessed on 21 October 2025.

Figure 4. Influence of variety and fungicide application (2 spray programme) on **spot form net blotch (SFNB)** plot infection (P-Value = 0.001, LSD (p=0.05) = 0.6), assessed on 21 October 2025.

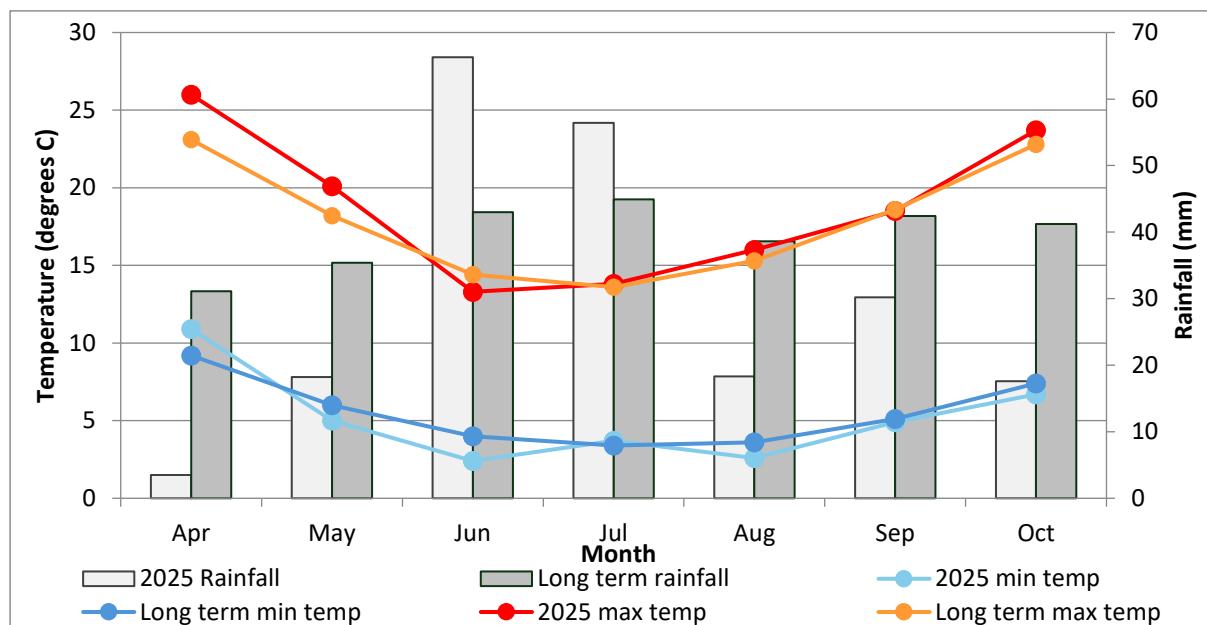
Lodging

Figure 5. Influence of barley variety on lodging index (0-1000) (P-Value = 0.001, LSD (p=0.05) = 59.9), assessed on 25 November 2025.

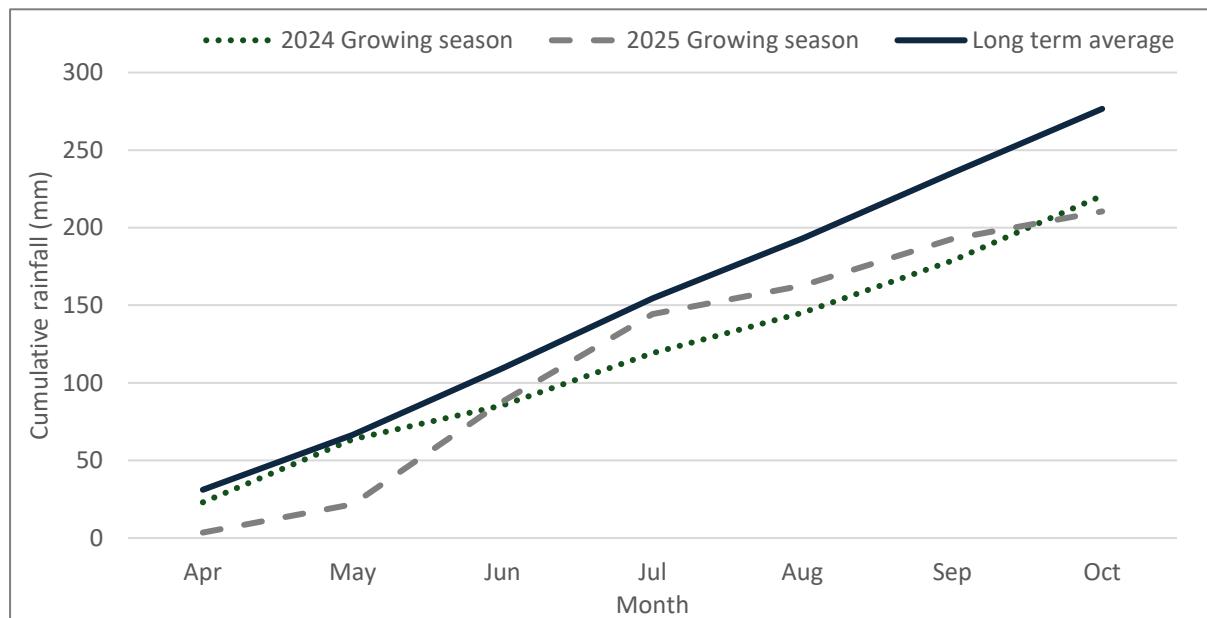
Development (Phenology)

Table 3. Phenology assessments (Zadoks stage) conducted throughout the growing season.

Variety	15-Jul	25-Jul	12-Aug	25-Aug	1-Sep	10-Sep	18-Sep	1-Oct	6-Oct	21-Oct
RGT Planet	27	27	31	32		41	49	57		85
Neo CL	28	28	31	32		43	49	59-65		85
Minotaur	26	27	31	31/32		37	45/49	55		83
Rosalind	23	30	32	33		43	49/51	59-65		87
AGT Bunyip IA	25	25	32	33		43	51	65	71	87
RGT Atlantis	27	27	32	32		41	49	53	57/65	85
RGT Asteroid	26	26	31	32		39	45	55	57/65	85
RP19034	27	27	31	32		39	49	57-61		87
RP21011	26	26	31	32		41	49	57	71	87
Ember	27	28	30	31/32		37	43	51		56/75
Soldier CL	25	28	31	32		41	45	59-65		85
KWS Donau	29	29	29	31	31	33	37	49		83
KW 2-1918	26	27	29	31/30	31	32/33	37	49		83
KW 2-1958	28	28	29	30	31	32/33	33	47	49	58/75
KWS Tardis	25	28	29	31	30	31/32	33	42		53/69
KWS Faro	28	28	29	30/31	31/32	32/33	37	49		83
KWS Wallace	26	26	30	30/31	31	32	33	45	49	71


Zadoks stages in bold are later developing winter barley varieties

Trial inputs


Table 4. Trial input and management details.

Sowing date:	30 April		
Harvest date:	25 November		
Seed rate:	180 seeds/m ²		
Basal fertiliser:	30 April	100 kg MAP/ha	
Pre-em herbicide:	29 April	Treflan 2.5L/ha	
		Reglone 200 1.8L/ha	
		Gramoxone 360 1.2L/ha	
		Boxer Gold 2.5L/ha	
		BS1000 0.16%	
Post-em herbicide:	1 July	Mateno Complete 750mL/ha	
	23 Sep	Dimethoate 400 200mL/ha	
Nitrogen:	23 July	Urea 217 kg/ha (100kg N/ha)	
	28 Aug	Urea 109 kg/ha (50kg N/ha)	
Fungicide:	Untreated	Plus fungicide	
	GS31	---	Prosaro 300 mL/ha
			Wetter 1000 0.2%
	GS39	---	Revystar 750mL/ha

Meteorological Data

Figure 6. 2025 growing season rainfall recorded on site and long-term rainfall recorded at Yarrawonga (1993 to 2025) and 2025 minimum and maximum temperatures and long-term mean recorded at Yarrawonga (1993 to 2025) for the growing season (Apr-Oct). Rainfall June to October = 210.5mm.

Figure 7. Cumulative growing season rainfall for 2025 (recorded on site), 2024 and the long-term average recorded at Yarrawonga.

These results are offered by Field Applied Research (FAR) Australia solely to provide information. While all due care has been taken in compiling the information, FAR Australia and employees take no responsibility for any person relying on the information and disclaims all liability for any errors or omissions in the publication.